A Primal Dual Active Set Algorithm for a Class of Nonconvex Sparsity Optimization
نویسندگان
چکیده
In this paper, we consider the problem of recovering a sparse vector from noisy measurement data. Traditionally, it is formulated as a penalized least-squares problem with an `1 penalty. Recent studies show that nonconvex penalties, e.g., `0 and bridge, allow more effective sparse recovery. We develop an algorithm of primal dual active set type for a class of nonconvex sparsity-promoting penalties, which cover `0, bridge, smoothly clipped absolute deviation, capped `1 and minimax concavity penalty. First we establish the existence of a global minimizer for the class of optimization problems. Then we derive a novel necessary optimality condition for the global minimizer using the associated thresholding operator. The solutions to the optimality system are coordinate-wise minimizers, and under minor conditions, they are also local minimizers. Upon introducing the dual variable, the active set can be determined from the primal and dual variables. This relation lends itself to an iterative algorithm of active set type which at each step involves updating the primal variable only on the active set and then updating the dual variable explicitly. When combined with a continuation strategy on the regularization parameter, the primal dual active set method has a global convergence property under the restricted isometry property. Extensive numerical experiments demonstrate its efficiency and accuracy.
منابع مشابه
Decomposing Linearly Constrained Nonconvex Problems by a Proximal Primal Dual Approach: Algorithms, Convergence, and Applications
In this paper, we propose a new decomposition approach named the proximal primal dual algorithm (Prox-PDA) for smooth nonconvex linearly constrained optimization problems. The proposed approach is primal-dual based, where the primal step minimizes certain approximation of the augmented Lagrangian of the problem, and the dual step performs an approximate dual ascent. The approximation used in th...
متن کاملProx-PDA: The Proximal Primal-Dual Algorithm for Fast Distributed Nonconvex Optimization and Learning Over Networks
In this paper we consider nonconvex optimization and learning over a network of distributed nodes. We develop a Proximal Primal-Dual Algorithm (Prox-PDA), which enables the network nodes to distributedly and collectively compute the set of first-order stationary solutions in a global sublinear manner [with a rate of O(1/r), where r is the iteration counter]. To the best of our knowledge, this i...
متن کاملPrimal-dual path-following algorithms for circular programming
Circular programming problems are a new class of convex optimization problems that include second-order cone programming problems as a special case. Alizadeh and Goldfarb [Math. Program. Ser. A 95 (2003) 3-51] introduced primal-dual path-following algorithms for solving second-order cone programming problems. In this paper, we generalize their work by using the machinery of Euclidean Jordan alg...
متن کاملNonconvex Semi-linear Problems and Canonical Duality Solutions
This paper presents a brief review and some new developments on the canonical duality theory with applications to a class of variational problems in nonconvex mechanics and global optimization. These nonconvex problems are directly related to a large class of semi-linear partial differential equations in mathematical physics including phase transitions, post-buckling of large deformed beam mode...
متن کاملPerturbed Proximal Primal Dual Algorithm for Nonconvex Nonsmooth Optimization
In this paper we propose a perturbed proximal primal dual algorithm (PProx-PDA) for an important class of optimization problems whose objective is the sum of smooth (possibly nonconvex) and convex (possibly nonsmooth) functions subject to a linear equality constraint. This family of problems has applications in a number of statistical and engineering applications, for example in high-dimensiona...
متن کامل